
3D Reconstruction in
Cryogenic Electron

Microscopy with Translation
and Rotational Variance

An Undergraduate Thesis Report 2 Submitted by

Maitrey Gramopadhye

Roll No. 160050049

Supervisor

Prof. Ajit Rajwade

Department of Computer Science and Technology

Indian Institute of Technology Bombay

Mumbai 400076 (India)

21 June 2020



Contents

1 Introduction 5
1.1 Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Radon Transform . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Fourier Slice Theorem . . . . . . . . . . . . . . . . . 6
1.1.4 Filtered Back Projection . . . . . . . . . . . . . . . . 7
1.1.5 Reconstruction with Compressed Sensing . . . . . . . 8
1.1.6 Applications . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Cryogenic Electron Microscopy . . . . . . . . . . . . . . . . 9
1.2.1 Tomography under unknown observation parameters 10
1.2.2 Moment-Based Approach . . . . . . . . . . . . . . . . 10
1.2.3 Ordering-Based Approach . . . . . . . . . . . . . . . 11

1.3 Basic Cryo-EM Pipeline . . . . . . . . . . . . . . . . . . . . 12
1.3.1 Particle Picking . . . . . . . . . . . . . . . . . . . . . 12
1.3.2 CTF Correction . . . . . . . . . . . . . . . . . . . . . 13
1.3.3 Clustering . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.4 Angle Assignment . . . . . . . . . . . . . . . . . . . . 13
1.3.5 3D reconstruction . . . . . . . . . . . . . . . . . . . . 14

1.4 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.1 3D structure determination from Common Lines -

Amit Singer, Y. Shkolnisky . . . . . . . . . . . . . . 14
1.4.2 Khursheed Ali’s M.Tech Project . . . . . . . . . . . . 15
1.4.3 RELION . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.4 CryoSPARC . . . . . . . . . . . . . . . . . . . . . . . 17

2 Our Method 17
2.1 Introduction and Significance . . . . . . . . . . . . . . . . . 17
2.2 Center of Mass Method . . . . . . . . . . . . . . . . . . . . . 18
2.3 Stochastic batchwise Expectation Maximisation . . . . . . . 21
2.4 Stochastic Average Gradient Descent . . . . . . . . . . . . . 22

2.4.1 Stochastic Average Gradients . . . . . . . . . . . . . 23
2.4.2 Importance Sampling . . . . . . . . . . . . . . . . . . 24

3 Compare and contrast with current packages 25

4 Experiments and Results 26
4.1 Datasets Used . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 Simulated Datasets . . . . . . . . . . . . . . . . . . . 26
4.1.2 Real Datasets . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2



4.2.1 Simulated Datasets . . . . . . . . . . . . . . . . . . . 33
4.2.2 Real Datasets . . . . . . . . . . . . . . . . . . . . . . 49

5 Future Work 53
5.1 CTF correction . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Branch and Bound . . . . . . . . . . . . . . . . . . . . . . . 53
5.3 Multiple Particle Case . . . . . . . . . . . . . . . . . . . . . 55

6 Acknowledgements 55

3



Abstract

Cryogenic Electron Tomography (Cryo-EM) is an imaging technique used
to produce high-resolution ( 1-4 nm) 3D views of samples. An electron mi-
croscope is used to record several 2D images of samples held at cryogenic
temperatures. These 2D images are then aligned to yeild a 3D (tomo-
graphic) reconstruction of the sample.

While reconstructing structures of particles such as proteins or mi-
crobes, the electron microscopes are used to image slides prepared from the
particle solutions at cryogenic temperatures. The output from the electron
microscope is a large 2D image (micrograph) often containing images of
several particles in various alignments, often in very low resolutions and
having a poor signal to noise ratio. These particles are then marked and
cropped out from the micrograph and denoised before reconstruction.

As the particles are randomly aligned in the micrographs their angles of
projections are unknown. Also, while cropping out the particles from the
micrograph, the particles need not be at the center of the crop, thus this
introduces a translational shift in the projections. The projection angle (3
degrees of freedom) and shifts (2 degrees of freedom) need to be estimated
first for a high quality 3D reconstruction.

We build upon the existing work for estimating projection angles and
present a robust method to estimate the projection shifts. We divide the
estimation of shifts in two steps, a course step and a fine tuning step. We
present results on simulated and real data and propose ideas to improve
them further.
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1 Introduction

1.1 Tomography

1.1.1 Introduction

As [1], [2] have explained tomography is the process of reconstructing an
image (object) from its projections in a lower dimension, usually 2D image
from 1D projections or 3D image from 2D projections. In case of CT
scans, it is also used to generate internal representations of the objects. A
tomographic projection is defined as the radon transform of the image in a
particular direction.

1.1.2 Radon Transform

As in [1], [3] radon transform can be defined as the projection of an image.
Where every bin (or pixel) on the transform is the summation of image
pixels lying on a line perpendicular to the projection and passing through
the bin. Conversely, it can be thought as if a line was drawn through the
image at some angle α and the image pixel values lying along the line were
integrated to form the value of one bin. Every bin on the projection is
formed by integrating along parallel lines with different offsets.

Mathematically, for a 2D image radon transform can be calculated as
in eq. (1). Where Rθ is a radon transform of f along direction θ and ρ
and δ is derac delta function. One projection is obtained by fixing θ and
varying ρ which is the offset.

Rθ(f) = g(ρ, θ) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(x cos θ + y sin θ − ρ)dxdy (1)

It can be observed that the radon transform would have one dimension
less than the image. Fig. 1 shows a visual representation of how radon
transforms of 2D images are taken.
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Figure 1: 2D to 1D Radon transform [3]

1.1.3 Fourier Slice Theorem

As stated in [1], [4] The Fourier slice theorem provides a very useful re-
lation between the 2D Fourier transform of the original function and the
1D Fourier transform of its Radon transform. The theorem states that the
Fourier transform of a projection of the 2D object along some direction θ
(i.e. G(µ, θ)) is equal to a slice of the 2D Fourier transform of the object
along the same direction θ (in the frequency plane), passing through the
origin.

If g(ρ, θ) is the radon transform of f mathematically it is proved in eq.
(2).
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G(µ, θ) =

∫ ∞
−∞

g(ρ, θ)exp(−j2πµρ)dρ

=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(x cos θ + y sin θ − ρ)exp(−j2πµρ)dxdydρ

=

∫ ∞
−∞

∫ ∞
−∞

f(x, y)

[∫ ∞
−∞

δ(x cos θ + y sin θ − ρ)exp(−j2πµρ)dρ

]
dxdy

=

∫ ∞
−∞

∫ ∞
−∞

f(x, y)exp(−j2πµ(x cos θ + y sin θ))dxdy

=

∫ ∞
−∞

∫ ∞
−∞

f(x, y)exp(−j2π(xu+ yv))dxdy (2)

Where u = µ cos θ and v = µ sin θ

∴ G(µ, θ) = [F (u, v)]u=µ cos θ,v=µ sin θ = F (µ cos θ, µ sin θ) (3)

The RHS of eq. (3) represents a slice of the 2D Fourier transform of f(x, y),
i.e. F(u,v), along the angle θ in the frequency plane, and passing through
the origin.

The fourier slice provides us a very easy way for tomographic recon-
struction of 2D images known as the Filtered Back Projection.

1.1.4 Filtered Back Projection

Given tomographic projections we hope to reconstruct the original image
by performing back projection along all the directions of projections and
adding up the results. One method for that is the filtered back projection.
[1]

Using radon transform and the fourier slice theorem we can reconstruct
the 2D image by using the filtered back projection. Consider the image
f(x, y), its fourier transform F (u, v), the projection g(ρ, θ) and its fourier
transform G(µ, θ).

By fourier slice theorem we have eq. (4).

f(x, y) =

∫ 2π

0

∫ ∞
0

G(µ, θ)exp(j2πµ(x cos θ + y sin θ))µdµdθ (4)

After simplifying eq. (4) can be written as eq. (5).

f(x, y) =

∫ π

0

∫ ∞
−∞

G(µ, θ)exp(j2πµ(x cos θ + y sin θ))|µ|dµdθ (5)
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In eq. (5), the inner integral is the 1D inverse fourier transform with an
added term |µ|. But this function is not integrable as |µ| grows unbound-
edly. To solve this problem, instead of |µ|, the Ram-Lak filter [1] is used
which is a clipped ramp filter.

Thus, using Ram-Lak filter Filtered Back Projection is defined as in eq.
(6).

f(x, y) =

∫ π

0

∫ ∞
−∞
|µ|rect(µD)G(µ, θ)exp(j2πµ(x cos θ+y sin θ))dµdθ (6)

1.1.5 Reconstruction with Compressed Sens-

ing

Another method for tomographic reconstruction is reconstruction using
compressed sensing (CS). [1] In most tomographic applications the number
of angles of projection is limited due to cost, energy and health consid-
erations. So the problem can be consider a type of ”angle starved” case.
Hence, tomography can be considered a CS problem. CS based tomo-
graphic reconstruction performs better than filtered back projection when
the number of angles is less.

CS exploits one important property of images - their sparsity or com-
pressibility in standard bases such as DCT. The cost function for CS based
tomographic reconstruction is given in eq. (7). This problem can be solved
using CS optimization algorithms like ISTA.

E(β) = ||y −RUβ||2 + λ||β||1 (7)

f = Uβ (8)

Where y vector is the concatenation of all tomographic projections. U
is the basis matrix in which the image f is sparse. β is the representation
of the image in U basis. R is the radon transform martix/operator.

1.1.6 Applications

The applications of tomography are in medical imaging such as CT scans
as shown in fig. 2.[5] It is used in industrial applications, such as fault
detection in machines or fault detection in buildings while construction.

It also has sensing applications, like observation of plant roots or remote
sensing of underground objects or phenomenon.
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Figure 2: CT scans of brain Source: shutterstock

1.2 Cryogenic Electron Microscopy
As given in [1], [6] Cryogenic Electron Microscopy, or Cryo-EM, is used for
imaging and reconstructing the structure of microscopic particles, such as
virus, bacteria or proteins. Instead of the CT scans which uses X-rays and
deals with imaging macroscopic particles, Cryo-EM uses an electron beam
for capturing projections. Thus, the resolution of Cryo-EM projections is
much better. However, in Cryo-EM the particles being observed are fragile
and thus could be destroyed if a high intensity electron beam is used, which
puts a limit on the resolution that can be achieved.

The intensity of the electron beam is adjusted according to the particle
to get maximum possible resolution in the projections. For preparing the
particles to be imaged, a slice of the sample is taken and frozen in vitrified
water (water mixed with ethane) to a temperature of −150◦C. Cryo-EM
gets its name because the process is carried out in these cryogenic condi-
tions and an electron microscope is used for imaging.

While imaging a slide of the sample is used, which contains several of
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the particles of interest. These particles can be aligned randomly and thus
in Cryo-EM the angle at which projections are taken is unknown. The
problem is made tougher due to the presence of high levels of noise in pro-
jections, noise levels often reaching 100-200% of the signal. This is due to
the limit on the maximum intensity of the electron beam that can be used.

1.2.1 Tomography under unknown observa-

tion parameters

In certain applications it is infeasible to know the angles at which the
tomographic projections are taken. These cases fall under the case of To-
mography under unknown observation parameters. In these cases, certain
methods are used to estimate the angles before the reconstruction step.
Some examples of said applications are as follows.

1. Patient motion during CT scanning

2. Moving insect tomography

3. Cryo-electron tomography

1.2.2 Moment-Based Approach

For understanding, consider the case of 2D images and 1D tomographic
projections although the theory is extensible to 3D images (and their 2D
projections).

The moment of order (p, q) of an image f(x, y) is defined in eq. (9).

Mp,q =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)xpyqdxdt (9)

The order n moment of a tomographic projection at angle θ is defined in
eq. (10).

M
(n)
θ =

∫ ∞
−∞

Pθ(s)s
nds (10)

Where Pθ(s) is the projection at angle θ.

Pθ(s) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(x cos θ + y sin θ − s)dxdy (11)

By substituting the value of Pθ(s) in the eq. (11) and simplifying, we get
eq. (12).

M
(n)
θ =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)(x cos θ + y sin θ)ndxdy (12)
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The Helgason-Ludwig consistency conditions (HLCC), given in [1] give re-
lations between image and projection moments, eq. (13).

M
(n)
θ =

n∑
l=0

f(x, y)Cn−l
n (cos θ)n−l(sin θ)lMn−l,l (13)

Since we know the projections of f(x, y), we know its moments M
(n)
θ . In

the above equation, the angles can be computed by iteratively solving for
angles. Then the earlier mentioned methods could be used for reconstruct-
ing the image.

By this method, in case of order-n moments M
(n)
θ . The original image

can be exactly reconstructed, if number of unique angles of projections is
at least n + 1, accurate upto a global rotation ambiguity. This method is
easy to implement, however it is very sentitive to the noise in projections.

1.2.3 Ordering-Based Approach

In this approach, explained in [1], the tomographic projections are “sorted”
- i.e. arranged in order of increasing angles. The method assumes availabil-
ity of a large number of tomographic projections - under unknown angles
- but sampled independently from a uniform distribution on a unit circle.
The problem essentially reduces to projection association - i.e. matching
each projection to one of the angles, sampled evenly from the unit circle.

It is solved iteratively, by first selecting a projection and assigning it a
random angle. Then selecting the closest projection to it (based on some
simple heuristic such as nearest neighbour search based on L2 distance)
and assigning it the next angle. The process is repeated till a full mapping
is completed.

An extra step can also be used in Ordering-Based approach to reduce
the computational complexity of the algorithm. Instead of doing pairwise
searches, a dimensionality reduction step is applied to the projections.

The projections are projected onto lower dimensional spaces in a man-
ner that keeps their relative position (based on the heuristic chosen) the
same, i.e. the projections far away from each other are still away in the
lower dimensional space. The lower dimentional projections are aligned
and angles are assigned to them. The original projections are also assigned
the same angles and reconstruction is done by any of the earlier mentioned
methods.
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1.3 Basic Cryo-EM Pipeline
Detailed below is the entire Cryo-EM pipeline. We follow a pipeline similar
to the one in [9]

1.3.1 Particle Picking

In Cryo-EM, we get huge micrographs of size for example 7000x7000. A
few real datasets are [7], [8]. This micrograph contains many particles of
interest, as shown for example in fig. 3, located at random positions and
at random orientations. Thus, they need to be cropped out before the 3D
structure of the particle can be estimated.

Figure 3: Cryo-EM Micrograph of GroEL [8]

Manual picking is one method to do this, where the biologists mark out
the particles themselves or crowd source the task. Certain supervised and
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semi-supervised methods also exist that mark out the particles. More on
this is given in Section 2.2.1 of [9]

1.3.2 CTF Correction

Image formation in an electron microscope for biological samples taken
under cryogenic environment by freezing the sample in vitrified water can
mathematically be described as Contrast Transfer Function (CTF). CTF
depends on many parameters, changing some of which improve resolution
but changes the shape or other properties of particles. If we know the
relations between the changes in these parameters, a CTF correction step
can be applied to estimate the correct structure of the particles. More on
this is given in Section 2.2.2 of [9]

1.3.3 Clustering

Since the levels of noise in Cryo-EM micrographs are high. In some al-
gorithms, similar particle projections are clustered and averaged to reduce
noise. Since an abundance of projections is available in Cryo-EM, it doesn’t
adversely affect the quality of reconstruction. The clustering is done in a
way that projections with similar angles of projection lie in the same clus-
ter. This can be done using simple heuristics like nearest neighbours based
on L2 difference. More on this is given in Section 2.2.3 of [9]

1.3.4 Angle Assignment

As tomographic reconstruction requires angles at which projections were
taken, an angle assignment step is performed using methods like moment-
based or ordering-based approach described earlier.

However, these methods assume that the number of projections are uni-
formly distributed over the entire angle space. In case of certain particles,
due to their structure, it is possible that their alignment in the slide is not
random, this gives rise to a distribution of angles that is not uniform. In
such cases multiple micrographs are collected by tilting the slides to collect
a more uniform distribution of angles of projection. However, this makes
the task of CTF correction more difficult. More on this is given in Section
2.2.4 of [9]
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1.3.5 3D reconstruction

After assigning angles, the 3D structure is reconstructed by methods like
FBP or CS described above. More on this is given in Section 2.2.5 of [9]

Since Cryo-EM micrographs have high levels of noise, the best results
are not obtained by the methods described so far. Algorithms that achieve
better results are described below.

1.4 Literature Survey

1.4.1 3D structure determination from Com-

mon Lines - Amit Singer, Y. Shkol-

nisky

The algorithms for angle estimation discussed so far rely on distance be-
tween the projections to sort them and assign them an angle of projection.
However, in case of Cryo-EM the number of projections is very large and
the SNR is low in projections. Due to this the angle assignment process
becomes computationally heavy and error prone.

An extra information present in case of 3D images and 2D projections
is the presence of common lines in projections. The common lines can be
used to estimate the relative angle between projections. Thus giving at
least a good initialization to the projection angles.

Per Fourier slice theorem, 2D Fourier transform of a 2D projection in
direction d is equal to a slice through the 3D Fourier transform of f , that
passes through the origin. Consider two projections of f . Both their fourier
transforms will be equal to a centeral slice through the 3D Fourier trans-
form of f . If these slices are non-coplannar, they will intersect in a line
passing through the origin. This line is called the common line.

Consider two projections at angles Ri and Rj intersecting in a common
line. Let cij be defined as the angle made by the common line in the
local coordinate space of Pi (Projection i). Similarly for Pj. Being the
common line of intersection, the mapping of cij by Ri must coincide with
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the mapping of cji by Rj, given by eq. (14)

Ricij = Rjcji

Where,

cij = (xi,j, yi,j, 0)T

cji = (xj,i, yj,i, 0)T

(14)

Unfortunately due to high noise valuse the exact equivalence is infeasible.
So eq. (15) is used instead.

max
R1,...,Rn

∑
i 6=j

Ricij.Rjcji (15)

Constrained by eq. (16) to remove the trivial solution.

RiR
T
i = I, for all i (16)

Defining S as eq. (17)

S =

[
S11 S12

S21 S22

]
where,

S11 = xijxji

S12 = xijyji

S21 = yijxji

S22 = yijyji

(17)

It can be shown that the solution for the direction of the common line
corresponds to the 3 largest eigen values of S in eq. (17). This gives us a
good initial estimate for the relative angle between the projections. More
detailed description of the method is in [11]

1.4.2 Khursheed Ali’s M.Tech Project

The work we propose is built upon [9]. This M.Tech project gives a super-
vised algorithm for particle picking from micrographs. It then goes on to
describe a method to reconstruct the 3D structure of the particles.

First the initial estimates of the angles of projections are computed from
the common lines in projections as described in the earlier section. Then
after initializing the angles the angles of projections and 3D reconstruction
are both iteratively optimized. The iterative optimisation tries to optimise
using eq. (18) in every iteration.
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(θ1i , θ
2
i , θ

3
i , G) = argmaxθ1i ,θ2i ,θ3i ,GNCor(p

true
i , Radon(G, [α+θ1i , β+θ2i , γ+θ3i ]))

where,

− k ≤ θ1 ≤ k

− k ≤ θ2 ≤ k

− k ≤ θ3 ≤ k

∀i = 1, 2..., N

α : angle with X axis

β : angle with Y axis

γ : angle with Z axis

k : angle search area parameter

N : number of projections

(18)

NCor(x, y) will finds out the normalized correlation between the image
x and y. Radon(G, ang) will find out the 3D radon transform of the 3D
object G at the given angle ang.

In the iterative loop, the 3D reconstruction is computed with the current
angle estimation. Then the projections of this reconstruction are taken
with the same angles of projection, but with some jitter added. Then these
new projections are compared with the original projections to generate a
normalised correlation value. The angle estimate is updated to the angle
of the new projection with most normalised correlation. Several values of
jitter are used in each iterative step and the projection angle estimations
are updated to the (projection angles + jitter) value that gave the best
correlation value. This loop is run till convergence.

1.4.3 RELION

RELION, for REgularized LIkelihood OptimizatioN, (described in detail
in [12]) is an open-source computer program for the refinement of macro-
molecular structures by single-particle analysis of electron cryo-microscopy
(cryo-EM) data. Whereas alternative approaches often rely on user exper-
tise for the tuning of parameters, RELION uses a Bayesian approach to
infer parameters of a statistical model from the data.

RELION proposed good methods that reduce the computational costs
for Cryo-EM reconstruction and gave new insights into the accuracy with
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which the relative orientations of individual particles may be iteratively
optimised.

1.4.4 CryoSPARC

Cryo-EM single-particle ab initio reconstruction and classification (cryoSPARC)
[13] uses a stochastic gradient descent (SGD) approach to iteratively re-
fine the final 3D reconstruction, insted of optimising the orientation and
translation parameters. After the SGD has terminated, they also apply a
branch-and-bound maximum likelihood optimization to refine the structure
to high resolution.

Furthermore, SGD with Bayesian marginalization allows ab initio (ran-
dom initialisation) 3D reconstruction.

2 Our Method

2.1 Introduction and Significance
The work we propose builds upon the M.Tech work of Khursheed Ali. We
propose improvements by the estimation and correction of translation er-
ror along with the estimation of angles of projections. We also improve
upon the completion time of the algorithm, while maintaining comparable
results, by employing stochasticity and gradient based approaches in the
iterative optimization loop.

The input for Cryo-EM reconstruction is a large micrograph with many
projections of the particles of interest. A particle picking step is necessary
before proceeding with the 3D reconstruction. Now, during the particle
picking step a single projection is extracted by enclosing it in a 2D bound-
ing box. Irrespective of the method used for constructing this box, whether
manual picking, supervised or semi-supervised algorithm, the particle en-
closed need not be at the center of the box. This gives rise to a shift or
translation error. We define this error as Et = (Tx, Ty). It arises due to im-
perfections in the algorithm used, human error etc and it is very infeasible
to ensure Et = (0, 0).

Now, Et poses a problem in 3D reconstruction step. As, 3D recon-
struction works essentially by back-projecting the projections along their
directions of projection and taking a sum over all back-projections. A key
assumption here is that all the projections are aligned i.e all their centers
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coincide. Also the same assumption is taken while computation common
lines for projections. Here, if the centers of projections are not aligned,
then for any two projections the common line won’t pass through the cen-
ter of both the projections, which is important for Fourier slice theorem.

In the works proposed in the literature survey, none initialise the projec-
tions to be aligned before their method is applied. [11] gives a good initial
estimate for the angles of projection. However, their work relies on esti-
mating common lines in projections and if the projections are misaligned
then the majority of common lines detected will be false detections which
will make the initial estimation useless.

This is the area where we mainly contribute by proposing a method
to estimate and correct majority of the translation error before common
line estimation. Our work divides the correction of translation error into
two steps, a coarse estimation step and a fine tuning step. We present the
complete algorithm for coarse estimation and fine tuning steps and give
promising results on simulated and real data for the same.

The coarse step is performed using Center of Mass estimation of the
projections. It is done before common line estimation and reduces the
translation error to at max 4 pixels (tested in case of simulated data with
gaussian noise with mean = 0 and sigma = 100% of mean of signal). The
fine tuning step then iteratively refines the estimates to reduce translation
error along with rotation error.

2.2 Center of Mass Method
This section describes in detail the Center of Mass Method method for
coarse Estimation and Correction of Translation error. We first prove that
the center of mass of the image should be projected to the center of mass
of the projection and then describe our method.

For simplicity assume the case of 2D image f(x, y) with a 1D radon
projection gθ(ρ) at angle θ. Consider the center of mass of f be (x̄, ȳ) and
of g be ρ̄. By the equation for center of mass we have eq. (19), eq. (20),
eq. (21) on x̄, ȳ, and ρ̄ respectively.

x̄ =

∫∞
−∞

∫∞
−∞ xf(x, y)dxdy∫∞

−∞

∫∞
−∞ f(x, y)dxdy

(19)
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ȳ =

∫∞
−∞

∫∞
−∞ yf(x, y)dxdy∫∞

−∞

∫∞
−∞ f(x, y)dxdy

(20)

ρ̄ =

∫∞
−∞ ρgθ(ρ)dρ∫∞
−∞ gθ(ρ)dρ

(21)

From eq. (1) of radon transform we have eq. (22)

gθ(ρ) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(x cos θ + y sin θ − ρ)dxdy∫ ∞
−∞

ρgθ(ρ)dρ =

∫ ∞
−∞

ρ

∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(x cos θ + y sin θ − ρ)dxdydρ

=

∫ ∞
−∞

∫ ∞
−∞

f(x, y)

∫ ∞
−∞

ρδ(x cos θ + y sin θ − ρ)dρdxdy

=

∫ ∞
−∞

∫ ∞
−∞

f(x, y)(x cos θ + y sin θ)dxdy

=

∫ ∞
−∞

∫ ∞
−∞

y sin θf(x, y)dxdy +

∫ ∞
−∞

∫ ∞
−∞

x cos θf(x, y)dxdy

(22)

Similarly, from eq. (1) we have eq. (23)∫ ∞
−∞

gθ(ρ)dρ =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(x cos θ + y sin θ − ρ)dxdydρ

=

∫ ∞
−∞

∫ ∞
−∞

f(x, y)dxdy (23)

Therefore,

ρ̄ =

∫∞
−∞ ρgθ(ρ)dρ∫∞
−∞ gθ(ρ)dρ

=

∫∞
−∞

∫∞
−∞ y sin θf(x, y)dxdy +

∫∞
−∞

∫∞
−∞ x cos θf(x, y)dxdy∫∞

−∞

∫∞
−∞ f(x, y)dxdy

ρ̄ = x̄ cos θ + ȳ sin θ

(24)

Therefore, from eq. (24) we can say that ρ̄ lies on the line x̄ cos θ+ ȳ sin θ−
ρ̄ = 0, i.e (x̄, ȳ) and ρ̄ lie on the same line and the line is in the direction
of projection. Therefore, (x̄, ȳ) is projected on ρ̄ for any θ. This can be
generalised for any dimensions.

In our Center of Mass method, we shift the center of mass of every
projection to the center of the projection to form shifted projections. We
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define the center of projection as the center of the projection image, i.e if
the projection is of size NxN the coordinates of the center of projection
would be (N/2, N/2) in the projection image. In this way, theoretically, the
center of the image is now projected to the center of the shifted projections.
Thus, the shifted projections are aligned with Et = 0. However this is not
the case due to the presence of noise. Never the less, this method provides
a good initial alignment for the projections.

For every projection we compute it’s center of mass and shift the pro-
jection such that the center of mass lies at the center of the projection.

func t i on [ rProj , s h i f t s ] = rmvTranslationWithCOG ( p r o j e c t i o n s )
[ l ,m, n]= s i z e ( p r o j e c t i o n s ) ;
rPro j=ze ro s ( l ,m, n ) ;
s h i f t s=ze ro s (2 , n ) ;
f o r i =1:n

p=p r o j e c t i o n s ( : , : , i ) ;
[ sumImg x , sumImg y , sumImg 0]= c e n t r o i d e s t (p ) ;

x = sumImg x/sumImg 0 ;
y = sumImg y/sumImg 0 ;

s h i f t x=round ( x −(m+1)/2) ;
s h i f t y=round ( y −( l +1)/2) ;
s h i f t s (1 , i )= s h i f t x ; s h i f t s (2 , i )= s h i f t y ;
[P ] = t r a n s l a t i o n s (p ,[− s h i f t x −s h i f t y ] ) ;
rPro j ( : , : , i )=P;

end
end

func t i on [ sum x , sum y , sum 0 ] = c e n t r o i d e s t ( img )
%% Find a cen t r o i d o f a 2d p r o j e c t i o n
[ a , b ] = s i z e ( img ) ;
x = 1 : a ;
y = 1 : b ;

[X , Y] = meshgrid (x , y ) ;

sum 0 = sum( double ( img ) , ’ a l l ’ ) ;
sum x = sum ( ( double ( img ) .∗ X ) , ’ a l l ’ ) ;
sum y = sum ( ( double ( img ) .∗ Y ) , ’ a l l ’ ) ;

end
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f unc t i on [ img ] = t r a n s l a t i o n s (p , s h i f t )
P = c i r c s h i f t (p , s h i f t ( 1 ) , 2 ) ;
img = c i r c s h i f t (P, s h i f t ( 2 ) , 1 ) ;

end

2.3 Stochastic batchwise Expectation
Maximisation

One of the methods we propose for iterative refinement of the orienta-
tions and translations (henceforth refered as parameters) of projections is
Stochastic batchwise Expectation Maximisation. This method draws mo-
tivation from RELION [12] and is an extension of the method used in [9].

We use the common line estimation approach from [11] to get an initial
estimate of the parameters of projections and use it as a starting point for
our refinement. As an input, we have an initial estimate of the 3D struc-
ture and initial orientations for all picked particles (original projections);
we initialise all the shifts to (0,0), as the center of mass method performs
a coarse translation correction on the original projections.

In each iteration of the Stochastic batchwise Expectation Maximisation
algorithm, we randomly (uniformly) select a batch of projections. For each
projection in the batch, we randomly select a subset of orientations and a
subset of translations. We select the parameters from a distribution, defin-
ing how relevant each parameter is to the 3D reconstruction.

We take projections of the current estimate of 3D structure for all the
parameters in this subset and compare these projections to the picked par-
ticles from the micrograph. We use minimum L2 error with the picked
particles to estimate the best possible parameters in this subset and assign
them as the current orientation and shift for the projection. To ensure that
the estimates of the parameters don’t get worse in any iteration, we also
include the current estimates in the subsets.

To define the relevance of an orientation or translation for a projection
we maintain a distribution on them. For the orientations for each projec-
tion, we use an uniform distribution, on the orientations in the vicinity of
the current orientation. With each iteration we reduce the size of this vicin-
ity, thus making the orientations close to current orientation more relevant
as we improve the 3D reconstruction. For the shifts, we use a Gaussian
centered at the current shift value, and in every iteration we reduce the
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variance of this gaussian, making the shifts closer to the current shift more
relevant as we improve the 3D structure.

By taking the projections and parameters in batches and not consid-
ering all the possibilities, we exploit the redundancy in the data and see
a great improvement upon the execution time. As the projections are se-
lected uniformly randomly, we assume that after several iterations all of
them would be considered, while having the advantage of updating the 3D
reconstruction more frequently. Also, by defining and updating distribu-
tions on the orientations and shifts, we avoid considering many irrelevant
options, thus improving the execution time further.

2.4 Stochastic Average Gradient De-
scent

In Stochastic Average Gradient Descent, we propose iteratively refining the
3D structure itself, instead of refining the orientations and shifts of projec-
tions. This method draws motivation from [13] and [14].

We initialise the 3D structure with the common line estimation ap-
proach from [11] and iteratively update it to minimise the posterior prob-
ability given by eq. (25).

p(V |θ) ∝ p(V )
K∏
i=1

p(Ii|θi) (25)

Where,

p(Ii|θi) =
Mr∑
j=1

Mt∑
k=1

wRwtp(Ii|θi, Rj, tk)p(Rj)p(tk) (26)

Where V is the 3D structure, Ii is a projection, θ is the CTF param-
eter, p(V ) is a prior over 3D molecular densities and K is the number
of picked particles. As suggested by [14], we have taken the prior to be

p(V ) =
∏D3

i=1 λe
−λVi where Vi is the density of the ith voxel, D is the size

of the picked particle images and λ is an adjustable constant.

Mr is the total orientations possible and Mt is the total shifts possible.
Rj is a possible orientation, i.e it is a rotation/reflection matrix of size 3x3.
Rj can be completely characterised by an axis of rotation, which is its di-
rection of tomographic projection and an angle which denotes its rotation
in the plane perpendicular to this axis. tk is a possible shift, i.e it denotes
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the shift of the center of the particle from the center of the projection im-
age, in the 2D projection plane.

We assume that the initial distribution on orientation parameters is
uniform and on shift parameters is a gaussian. Thus, wR = M−1

r and wt is
a gaussian centered at (0,0) with a variance of 3. As described in section
2.1, the maximum translation error we saw on simulated data after the
coarse shift correction step was 4 pixels from (0,0). Thus, we have kept the
variance 3 making an assumption that the translation error will be small.

Optimising the structure corresponds to finding V that maximizes the
posterior. We choose our objective function as in eq. (27)

f(V ) = −logp(V )−
K∑
i=1

logp(Ii|θi) (27)

However, optimising this function directly is costly due to the large
number of particles and large number of possible parameters. Therefore,
we employ stochastic average gradients and importance sampling.

We calculate p(Ii|θi, Rj, tk) by calculating the L2 error, eq. (28), be-
tween the projection of the current estimate of the 3D structure, with the
parameters Rj and tk, and the original picked particle Ii

p(I|θ, r, t) =
1

Z
exp(

∑
l

−1

2σ2
|Yl(r)− Sl(t)Il|2)

Yl(r) = Θl(r)V

(28)

Where l represents a pixel in the projection I, σ is the noise standard
deviation, Sl(t)Il is the lth pixel of projection I after applying a shift of
t, Yl(r) is the projection of V at orientation r and Z is a normalisation
constant.

2.4.1 Stochastic Average Gradients

SAGD explicitly produces an estimate of the full gradient over the entire
dataset as described in [14]. Our goal, as stated above is to minimize the
negative log posterior given by eq. (29).

f(V ) =
K∑
i=1

[− 1

K
logp(V )− logp(Ii|θi)] (29)
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f(V ) =
K∑
i=1

[fi(V )] (30)

At each iteration τ , SAGD selects a random particle image, indexed
by iτ , the corresponding objective for which is the log likelihood, denoted,
fi(V ). Also, let the gradient of the objective with respect to the 3D struc-
ture be giτ (V ) ≡ ∇V fiτ (V ). SAGD then computes an update given by eq.
(31).

Vτ+1 = Vτ −
ε

L

K∑
i=1

[dV τ
i ] (31)

where ε is a base learning rate, L is a Lipschitz constant of the gradient
giτ (V ) and dV τ

i is given by eq. (32).

dV τ
i = giτ (V ) if i == iτ (32)

= dV τ−1
i otherwise

Further, rather than selecting a single data point at each iteration, we
select a subset of data points (batches) and compute the gradient for the
sum of the objective over the entire batch.

L is estimated using a line search algorithm where an initial value of L is
increased until the instantiated Lipschitz condition f(V )−f(V −L−1dV ) <
||dV ||2
2L

is met. In between line searches, L is also gradually decreased to try
to take larger steps.

2.4.2 Importance Sampling

The cost of computing the required gradient remains high even after imple-
menting a stochastic batch method over picked particles due to marginal-
ization over 3D orientations and 2D shifts in eq. (26). Intuitively, one could
consider randomly selecting a subset of the parameters and using them to
calculate an approximation. We do just that and draw random subsets of
particles from their importance distributions.

We select the subset of parameters from importance distributions de-
fined on the parameter space. We initialise different distributions for the
orientations and shifts of each projection as described in section 2.4. The
initial distribution on orientation parameters, ψR, is uniform in the vicin-
ity of the initial orientation, being zero everywhere else. The initial shift
distribution, ψt, is a gaussian centered at (0,0) with a variance of 3.
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We update the distributions for each projection by eq. (33).

qj = (1− α)Z−1
∑
i∈τ

φ
1/T
i Ki,j + αψ (33)

Where,

φRj =
∑
k∈τ t

wtkp(Ii|θi, Rj, tk)

Ntqtk

φtk =
∑
j∈τR

wRj p(Ii|θi, Rj, tk)

NRqRj

Where, qj is the importance distribution for the jth parameter, q being
a distribution on either orientations or translations. ψ is the initial dis-
tribution. α is the mixing parameter with the prior distribution and T is
an annealing parameter. Kernel Ki,j is used to diffuse probability around
parameters as neighbouring parameters are more likely to be useful. φi
can be thought as a random variable, that when selected according to the
importance distribution q would be in expectation equal to the inner sum
in the posterior. j spans over all parameter space and i spans over the
subset of parameters selected in the iteration.

Nt is the total number of shifts possible and NR is the total number
of orientations possible. KR

i,j is proportional to cos(ai,j), where ai,j is the
angle between orientation directions of Ri and Rj. K

t
i,j is proportional to

the distance between the shifts ti and tj.

We perform this update to the importance distribution in every itera-
tion.

3 Compare and contrast with
current packages

Even though we take motivation from earlier works, we suggest and have
implemented various modifications to them.

Comparing our Stochastic batchwise Expectation Maximisation method
with RELION [12], we take the motivation for initialising the orientations
from them but go an extra step and use our Center of mass method to ini-
tialise the translations as well. RELION also proposes a method to select
a few parameters instead of all of them to update the optimal parame-
ter. However, our methods of selecting the parameters differ. RELION
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proposes a hierarchical grid on the parameter space. A distribution on the
parameters is first computed on the parameters using a coarse grid, and the
parameter ranges with maximum values are selected. Then a finer grid is
used on these ranges to select the parameters. This is done for both orienta-
tions and shifts, in each iteration. RELION doesn’t maintain a distribution
on the parameter space like we propose. Our method of maintaining a dis-
tribution produces reasonable results and also avoids heavy computation
in every iteration, thus increasing efficiency.

For our Stochastic Average Gradient Descent, we draw motivation from
CryoSPARC package [13]. However, there are several key differences in our
implementation. The key difference in algorithm being that CryoSPARC
uses SGD whereas we use SAGD, which is described in [14]. We maintain
a gradient for all particles and not just the ones selected in the itera-
tion, while maintaining similar time complexity. This helps us generalise
over the data better and leads to faster reconstruction. Another differ-
ence is that we provide a decent initialisation as a starting point, whereas
CryoSPARC uses a random initialisation. The motivation for a random
initialisation can be understood as - without a prior bias the algorithm can
detect other underlying structures in case of multi-conformer data. How-
ever, in our case of single particle reconstruction, providing an initialisation
helps achieve better reconstruction time. We also propose importance dis-
tributions to better select revelant orientations and shifts, which is not
included in the CryoSPARC paper. CryoSPARC however does propose an
additional Branch and Bound algorithm to be applied after SGD converges
to further increase resolution of the reconstruction.

4 Experiments and Results

4.1 Datasets Used
We use 2 types of datasets to test our algorithms. Simulated datasets and
real datasets

4.1.1 Simulated Datasets

The simulated datasets used for our experiments are taken from the ”Elec-
tronic Microscopic Data Bank” [15]. Our algorithm was tested on the
EMDB-8647 (fig. 4) and EMDB-5689 (fig. 5).
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EMD-8647 (fig. 4) is a ribosome from Mycobacterium smegmatis, i.e.,
the human pathogen Mycobacterium tuberculosis. It’s a ribosome of voxel
dimension 2.5 ∗ 2.5 ∗ 2.5A◦ and map dimensions as 128 ∗ 128 ∗ 128, but for
experiments purpose, it’s being downsampled by 2. So, throughout all the
experiments, the map dimension will be 64 ∗ 64 ∗ 64.

Figure 4: EMDB-8647 Source: [15]

EMD-5689 (fig. 5) is the Enterobacteria phage T7, a bacteriophage,
i.e a virus composed of DNA. Its voxel dimension are 16 ∗ 16 ∗ 16A◦ and
map dimensions as 160 ∗ 160 ∗ 160, but for experiments purpose, it’s being
downsampled by 2. So, throughout all the experiments, the map dimension
will be 80 ∗ 80 ∗ 80.
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Figure 5: EMDB-5689 Source: [15]

We generate simulated data by taking 2D projections of these particles
in random orientations and then adding gausian noise and random shifts
to them (fig. 6).
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(a) Noise=0% |
Shift=0px

(b) Noise=10% |
Shift=10px

(c) Noise=100% |
Shift=0px

(d) Noise=0% |
Shift=10px

(e) Noise=50% |
Shift=10px

(f) Noise=100% |
Shift=10px

Figure 6: Projections of EMDB-8647 [15] at varying levels of gaussian noise
(in percentage - %) and shift (in pixels - px)

4.1.2 Real Datasets

The real datasets used for our experiments are taken from the ”Electron
Microscopy Public Image Archive (EMPIAR)” [16]. Our algorithm was
tested on the EMPIAR-10295 [7] (fig. 4) and EMPIAR-10029 [8] (fig. 5).

EMPIAR-10295 (fig. 7) is the Single particle cryo-EM dataset of clathrin
cages. Its map dimensions are 750∗750∗750, but for experiments purpose,
it’s being downsampled by 10. So, throughout all the experiments, the map
dimension will be 75 ∗ 75 ∗ 75.
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Figure 7: EMPIAR-10295 Source: [7]

EMPIAR-10029 (fig. 8) is a simulated cryoEM data set of GroEL par-
ticles. Its map dimensions are 200∗200∗200, but for experiments purpose,
it’s being downsampled by 4. So, throughout all the experiments, the map
dimension will be 50 ∗ 50 ∗ 50.
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Figure 8: EMPIAR-10029 Source: [8]

From EMPIAR, we get stacks of picked particles for some 3D structures.
The structures we perform experiments on have their picked particles avail-
able (fig. 9), (fig. 10). This allows us to skip the particle picking step. In
a final package, a micrograph would be given as input and the particle
picking step would need to be applied, [9] is a good implementation of a
particle picker.
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Figure 9: Picked Particles of EMPIAR-10295 [7]

Figure 10: Picked Particles of EMPIAR-10029 [8]
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4.2 Results
This section details the results from our experiments. We conduct exper-
iments on simulated datasets and real datasets both. We present results
obtained from the pipeline we described. We use our own method for
coarse estimation (section 2.2) and correction of shifts before the iterative
refinement. We describe results from both our proposed methods for itera-
tive refinement - Stochastic batchwise Expectation Maximisation (section
2.3) and Stochastic Average Gradient Descent (section 2.4). All the other
parameters used for reconstruction are presented with the results. The
reconstruction videos can be found at https://drive.google.com/open?
id=1eGZZlh0Z1q1ERNyEI20yOeIXlpIBg659.

4.2.1 Simulated Datasets

Simulated datasets [15].

Stochastic batchwise Expectation Maximisation

The cross-sections of reconstructed 3D structures are displayed below. In
the results,
total projections = 2000
batch size of projection for each iteration = 200
max iterations = 50
batch size of orientation parameters considered for each iteration = 1000
batch size of shift parameters considered for each iteration = 25

Compared to our previous report [10], these results are comparable in
resolution but were generated much faster. In [10], results with similar
resolution would take approximately 100 hours to generate, whereas this
work generates them in 6-7 hours.
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(a) 3D reconstruction of EMDB-8647 [15] | Noise=10%
| Shift=3 pixel | Cross-section at Z=20/64

(b) 3D reconstruction of EMDB-8647 [15] | Noise=10%
| Shift=3 pixel | Cross-section at Z=25/64

(a) 3D reconstruction of EMDB-8647 [15] | Noise=10%
| Shift=3 pixel | Cross-section at Z=30/64

(b) 3D reconstruction of EMDB-8647 [15] | Noise=10%
| Shift=3 pixel | Cross-section at Z=35/64
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(a) 3D reconstruction of EMDB-8647 [15] | Noise=10%
| Shift=3 pixel | Cross-section at Z=40/64

(b) 3D reconstruction of EMDB-8647 [15] | Noise=10%
| Shift=3 pixel | Cross-section at Z=45/64

(a) 3D reconstruction of EMDB-8647 [15] | Noise=30%
| Shift=10 pixel | Cross-section at Z=20/64

(b) 3D reconstruction of EMDB-8647 [15] | Noise=30%
| Shift=10 pixel | Cross-section at Z=25/64
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(a) 3D reconstruction of EMDB-8647 [15] | Noise=30%
| Shift=10 pixel | Cross-section at Z=30/64

(b) 3D reconstruction of EMDB-8647 [15] | Noise=30%
| Shift=10 pixel | Cross-section at Z=35/64

(a) 3D reconstruction of EMDB-8647 [15] | Noise=30%
| Shift=10 pixel | Cross-section at Z=40/64

(b) 3D reconstruction of EMDB-8647 [15] | Noise=30%
| Shift=10 pixel | Cross-section at Z=45/64
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(a) 3D reconstruction of EMDB-8647 [15] | Noise=50%
| Shift=15 pixel | Cross-section at Z=20/64

(b) 3D reconstruction of EMDB-8647 [15] | Noise=50%
| Shift=15 pixel | Cross-section at Z=25/64

(a) 3D reconstruction of EMDB-8647 [15] | Noise=50%
| Shift=15 pixel | Cross-section at Z=30/64

(b) 3D reconstruction of EMDB-8647 [15] | Noise=50%
| Shift=15 pixel | Cross-section at Z=35/64
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(a) 3D reconstruction of EMDB-8647 [15] | Noise=50%
| Shift=15 pixel | Cross-section at Z=40/64

(b) 3D reconstruction of EMDB-8647 [15] | Noise=50%
| Shift=15 pixel | Cross-section at Z=45/64

(a) 3D reconstruction of EMDB-8647 [15] | Noise=80%
| Shift=15 pixel | Cross-section at Z=20/64

(b) 3D reconstruction of EMDB-8647 [15] | Noise=80%
| Shift=15 pixel | Cross-section at Z=25/64
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(a) 3D reconstruction of EMDB-8647 [15] | Noise=80%
| Shift=15 pixel | Cross-section at Z=30/64

(b) 3D reconstruction of EMDB-8647 [15] | Noise=80%
| Shift=15 pixel | Cross-section at Z=35/64

(a) 3D reconstruction of EMDB-8647 [15] | Noise=80%
| Shift=15 pixel | Cross-section at Z=40/64

(b) 3D reconstruction of EMDB-8647 [15] | Noise=80%
| Shift=15 pixel | Cross-section at Z=45/64
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(a) 3D reconstruction of EMDB-8647 [15] | Noise=100%
| Shift=15 pixel | Cross-section at Z=20/64

(b) 3D reconstruction of EMDB-8647 [15] | Noise=100%
| Shift=15 pixel | Cross-section at Z=25/64

(a) 3D reconstruction of EMDB-8647 [15] | Noise=100%
| Shift=15 pixel | Cross-section at Z=30/64

(b) 3D reconstruction of EMDB-8647 [15] | Noise=100%
| Shift=15 pixel | Cross-section at Z=35/64
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(a) 3D reconstruction of EMDB-8647 [15] | Noise=100%
| Shift=15 pixel | Cross-section at Z=40/64

(b) 3D reconstruction of EMDB-8647 [15] | Noise=100%
| Shift=15 pixel | Cross-section at Z=45/64
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(a) 3D reconstruction of EMDB-5689 [15] | Noise=10%
| Shift=3 pixel | Cross-section at Z=24/80

(b) 3D reconstruction of EMDB-5689 [15] | Noise=10%
| Shift=3 pixel | Cross-section at Z=32/80

(a) 3D reconstruction of EMDB-5689 [15] | Noise=10%
| Shift=3 pixel | Cross-section at Z=40/80

(b) 3D reconstruction of EMDB-5689 [15] | Noise=10%
| Shift=3 pixel | Cross-section at Z=48/80
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(a) 3D reconstruction of EMDB-5689 [15] | Noise=10%
| Shift=3 pixel | Cross-section at Z=56/80

(b) 3D reconstruction of EMDB-5689 [15] | Noise=10%
| Shift=3 pixel | Cross-section at Z=64/80

(a) 3D reconstruction of EMDB-5689 [15] | Noise=30%
| Shift=15 pixel | Cross-section at Z=24/80

(b) 3D reconstruction of EMDB-5689 [15] | Noise=30%
| Shift=15 pixel | Cross-section at Z=32/80
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(a) 3D reconstruction of EMDB-5689 [15] | Noise=30%
| Shift=15 pixel | Cross-section at Z=40/80

(b) 3D reconstruction of EMDB-5689 [15] | Noise=30%
| Shift=15 pixel | Cross-section at Z=48/80

(a) 3D reconstruction of EMDB-5689 [15] | Noise=30%
| Shift=15 pixel | Cross-section at Z=56/80

(b) 3D reconstruction of EMDB-5689 [15] | Noise=30%
| Shift=15 pixel | Cross-section at Z=64/80
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(a) 3D reconstruction of EMDB-5689 [15] | Noise=80%
| Shift=15 pixel | Cross-section at Z=24/80

(b) 3D reconstruction of EMDB-5689 [15] | Noise=80%
| Shift=15 pixel | Cross-section at Z=32/80
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(a) 3D reconstruction of EMDB-5689 [15] | Noise=80%
| Shift=15 pixel | Cross-section at Z=40/80

(b) 3D reconstruction of EMDB-5689 [15] | Noise=80%
| Shift=15 pixel | Cross-section at Z=48/80

(a) 3D reconstruction of EMDB-5689 [15] | Noise=80%
| Shift=15 pixel | Cross-section at Z=56/80

(b) 3D reconstruction of EMDB-5689 [15] | Noise=80%
| Shift=15 pixel | Cross-section at Z=64/80
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Stochastic Average Gradient Descent

The cross-sections of reconstructed 3D structures are displayed below. In
the results,
total projections = 2000
batch size of projection for each iteration = 200
max iterations = 50
batch size of orientation parameters considered for each iteration = 1000
batch size of shift parameters considered for each iteration = 25
base learning rate ε=0.01
constant in prior λ = 0.0005
Lipschitz constant initialisation L = 1

Compared to our previous report [10], these results are comparable in
resolution but were generated much faster. In [10], results with similar
resolution would take approximately 100 hours to generate, whereas this
work generates them in 12-15 hours.

(a) 3D reconstruction of EMDB-8647 [15] | Noise=10%
| Shift=10 pixel | Cross-section at Z=20/80

(b) 3D reconstruction of EMDB-8647 [15] | Noise=10%
| Shift=10 pixel | Cross-section at Z=25/80
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(a) 3D reconstruction of EMDB-8647 [15] | Noise=10%
| Shift=10 pixel | Cross-section at Z=30/80

(b) 3D reconstruction of EMDB-8647 [15] | Noise=10%
| Shift=10 pixel | Cross-section at Z=40/80

(a) 3D reconstruction of EMDB-8647 [15] | Noise=10%
| Shift=10 pixel | Cross-section at Z=45/80

(b) 3D reconstruction of EMDB-8647 [15] | Noise=10%
| Shift=10 pixel | Cross-section at Z=45/80
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4.2.2 Real Datasets

Real datasets [7], [8].

Stochastic batchwise Expectation Maximisation

The cross-sections of reconstructed 3D structures are displayed below. In
the results,
total projections = 2500
batch size of projection for each iteration = 200
max iterations = 50
batch size of orientation parameters considered for each iteration = 1000
batch size of shift parameters considered for each iteration = 25

Compared to our previous report [10], these results are comparable in
resolution but were generated much faster. In [10], results with similar
resolution would take approximately 120 hours to generate, whereas this
work generates them in 6-7 hours.

(a) 3D reconstruction of EMPIAR-10295 [7] | Cross-
section at Z=21/75

(b) 3D reconstruction of EMPIAR-10295 [7] | Cross-
section at Z=27/75
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(a) 3D reconstruction of EMPIAR-10295 [7] | Cross-
section at Z=33/75

(b) 3D reconstruction of EMPIAR-10295 [7] | Cross-
section at Z=39/75

(a) 3D reconstruction of EMPIAR-10295 [7] | Cross-
section at Z=45/75

(b) 3D reconstruction of EMPIAR-10295 [7] | Cross-
section at Z=51/75
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Stochastic Average Gradient Descent

The cross-sections of reconstructed 3D structures are displayed below. In
the results,
total projections = 1000
batch size of projection for each iteration = 200
max iterations = 10
batch size of orientation parameters considered for each iteration = 1000
batch size of shift parameters considered for each iteration = 25
base learning rate ε=1
constant in prior λ = 0.00001
Lipschitz constant initialisation L = 1

Compared to our previous report [10], these results are comparable in
resolution but were generated much faster. In [10], results with similar
resolution would take approximately 120 hours to generate, whereas this
work generates them in 12-15 hours.

(a) 3D reconstruction of EMPIAR-10295 [7] | Cross-
section at Z=21/75

(b) 3D reconstruction of EMPIAR-10295 [7] | Cross-
section at Z=27/75
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(a) 3D reconstruction of EMPIAR-10295 [7] | Cross-
section at Z=33/75

(b) 3D reconstruction of EMPIAR-10295 [7] | Cross-
section at Z=39/75

(a) 3D reconstruction of EMPIAR-10295 [7] | Cross-
section at Z=45/75

(b) 3D reconstruction of EMPIAR-10295 [7] | Cross-
section at Z=51/75
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5 Future Work

5.1 CTF correction
During our work, we faced several difficulties with selecting datasets, and
even still are not confident with the results on the datasets selected. There
are several unknown parameters like CTF and value ranges of the datasets
that make reconstruction using them very difficult.

In several of the datasets tried, in the final reconstruction white line
like artifacts could be seen in the background which overshadow the 3D
structure itself (fig. 44), this error is not due to our parameter assignment
steps proposed and occurs even when the particles are assigned to their
ideal orientation and shift (tested on simulated dataset). Another issue
faced was with the noise removal step, we saw that the noise removal step,
in several cases, instead of blurring the background, blurs the particle itself,
which in turn causes an error with the coarse shift estimation step. We
believe that these issues could be solved by applying CTF correction or
scaling all micrographs used to a similar range.

Figure 44: EMPIAR-10029 [8]. Reconstruction using Stochastic batchwise
Expectation Maximisation

5.2 Branch and Bound
Branch and Bound is a method used in CryoSPARC for further refinement
of the 3D structure to achieve a high resolution after the stochastic refine-
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ment has converged. It works in a similar manner to iterative refinement
of the orientations and shifts, but here all the projections are used in every
iteration. It is more costly because it uses all the projections but note that
it is run after stochastic refinement is converged and is only used to refine
the structure to a high resolution, thus doesn’t run for many iterations.
Branch and bound method however, does propose on a method to sample
the orientations and shifts so that not all need to to be used and time re-
quired for the algorithm can be reduced. The optimal orientation or shift
in every iteration is conventionally selected by taking a projection of the
3D structure at all possible orientations and shifts and picking the ones
which correspond to the least L2 error with the original picked particle.
However taking projections for all the parameters and calculating their L2
error is very time taking.

Branch and bound method works by calculating a lower bound of the
L2 error for all the parameters. The lower bound is selected to be a func-
tion which can be calculated efficiently. After calculating all the lower
bounds, the actual L2 error is calculated for the parameters with lowest
lower bound. We now have one possibility for optimal parameters, and
thus we can reject all the parameter ranges which have their lower bound
more that this computed L2 error. Since the L2 error is always greater
than or equal to it’s lower bound, it can never be less than the L2 error for
the parameters selected.

The lower bound on L2 error is calculated by first taking the Fourier
transform of the picked particles and the 3D structure. We only consider
the few lower Fourier frequencies to calculate the L2 error here, i.e. we take
the projections of the 3D structure for all the parameters and calculate the
L2 error with the original picked particles, but in doing this only consider
the lower few Fourier frequencies. This is possible since we are in Fourier
domain and taking projection is simply taking a slice of the 3D structure
(Fourier slice theorem). We term the L2 error so calculated as the lower
bound.

This makes sense as the lower bound, since first, the actual L2 error will
consider all the Fourier frequencies and will thus definitely be greater than
this. However, it will not be very different as a reasonable assumption is
that most of the information content is in the lower frequency range, sup-
ported by the inverse square law of frequencies.

In future works, branch and bound can be used to refine the 3D struc-
ture further.
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5.3 Multiple Particle Case
So far, in our micrographs we only had a single 3D structure and didn’t
need to worry about clustering and separating particles belonging to dif-
ferent structures prior to reconstruction. Moving forward we could relax
this assumption and consider a mixture of particles that would need to be
separated before reconstructing. Our work would then be combined with
the work of Rupesh, who is working on the clustering problem with Prof.
Ajit Rajwade.
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